108 | Precipitation extremes | Gazi Tawfiq Ezaz , Ke Zhang , Xin Li , Md Halim Shalehy , Mohammad Akram Hossain , Linxin Liu ,Spatiotemporal changes of precipitation extremes in Bangladesh during 1987–2017 and their connections with climate changes, climate, Global and Planetary Change oscillations, and monsoon dynamics |
107 | hydrological-hydraulic model
| Zhang, K; Shalehy, MH; Ezaz, GT; Chakraborty, A; Mohib, KM; Liu, LX;An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis,Environmental Modelling and Software |
106 | Flood forecasting | Zang, S., †Z. Li, †K. Zhang, C. Yao, Z. Liu, J. Wang, Y. Huang, and S. Wang (2021). Improving the flood prediction capability of the Xin’anjiang model by formulating a new physics-based routing framework and a key routing parameter estimation method, Journal of Hydrology, 603, 126867. |
105 | Dry/wet conditions | Chen, X., †Q. Quan, †K. Zhang, and J. Wei (2021). Spatiotemporal characteristics and attribution of dry/wet conditions in the Weihe River Basin within a typical monsoon transition zone of East Asia over the recent 547 years, Environmental Modelling and Software, 143, 105116. |
104 | Water cycle | 曹易,†张珂,李致家,张维江,张菁 (2021). 宁夏三河源地区2000~2017 年水循环关键要素时空变化分析,水文,41(3), 88-94. [Cao, Y., †K. Zhang, Z. Li, W. Zhang, and J. Zhang (2021). Study on spatiotemporal variability and changes of key water cycle elements in the Three River Source Area of Ningxia from 2000 to 2017, Journal of China Hydrology, 41(3), 88-94]. |
103 | ET | A comprehensive evaluation of five evapotranspiration datasets based on ground and GRACE satellite observations: implications for improvement of evapotranspiration retrieval algorithm, Remote Sensing, 13, 2414, doi:10.3390/rs13122414. |
102 | Flood forecasting | 姚成,李致家,张珂,朱跃龙,刘志雨,黄迎春,龚珺夫,张锦堂,童冰星 (2021). 基于栅格型新安江模型的中小河流精细化洪水预报,河海大学学报(自然科学版), 49(1), 19-25. |
101 | Flood forecasting | †李致家,朱跃龙,刘志雨,张珂,包红军,周国良,刘艳丽,何秉顺,万定生,李巧玲 (2021). 中小河流洪水防控与应急管理关键技术的思考,河海大学学报(自然科学版), 49(1), 13-18. |
100 | Flood forecasting | †Sun, L., Z. Li, K. Zhang, and T. Jiang (2021). Impacts of precipitation and topographic conditions on the model simulation in the north of China, Water Science and Technology-Water Supply, 21 (3): 1025–1035. |
99 | Precipitation | 张菁,†张珂,王晟,肖潺,陶然,鞠艳,李巧玲,李致家,阳辉,刘湘伟 (2021). 陕甘宁三河源区近50年极端降水时空变化分析,河海大学学报(自然科学版), 49(3), 288-294 |
98 | ET | †张珂,鞠艳,李致家 (2020). 金沙江流域实际蒸散发遥感重建及时空特征分析,水科学进展 |
97 | Water export | 范亚洲,†张珂,刘林鑫,晁丽君,姚 成 (2020). 水库水体的最大类间方差迭代遥感提取方法,水资源保护. |
96 | Flood forecasting | †张珂,牛杰帆,李曦,晁丽君 (2021). 洪水预报智能模型在中国半干旱半湿润区的应用对比,水资源保护,37(1), 28-35+60, doi:10.3880/j.issn.1004-6933.2021.01.005. |
95 | Precipitation | Li, X., †K. Zhang, P. Gu, H. Feng, Y. Yin, W. Chen, and B. Cheng (2021). Changes in precipitation extremes in the Yangtze River Basin during 1960-2019 and the association with global warming, ENSO, and local effects, Science of the Total Environment, 757, 144244. |
94 | WRF-Hydro-RAPID mode | Chao, L., †K. Zhang, Z.-L. Yang, J. Wang, P. Lin, J. Liang, Z. Li, and Z. Gu (2021). Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method, Journal of Hydrology, 592, 125814, doi:10.1016/j.jhydrol.2020.125814. |
93 | Xin’anjiang Model | Zang, S., †Z. Li, †C. Yao, K. Zhang, M. Sun, and X. Kong (2020). A new runoff routing scheme for Xin’anjiang Model and its routing parameters estimation based on geographical informaiton, Water, 12, 3429, doi:10.3390/w12123429. |
92 | A hybrid runoff generation modelling framework | Liu, Y., †K. Zhang, †Z. Li, Z. Liu, J. Wang, and P. Huang (2020). A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds, Journal of Hydrology, 590, 125440. |
91 | CA-Markov Model | Ruben, Gebdang B., †K. Zhang, Z. Dong, and J. Xia (2020). Analysis and Projection of Land-Use/Land-Cover Dynamics through Scenario-Based Simulations Using the CA-Markov Model: A Case Study in Guanting Reservoir Basin, China, Sustainability, 12, 3747, doi:10.3390/su12093747. |
90 | Green-Ampt rainfall-runoff model | Huo, W., †Z. Li, †K. Zhang, J. Wang, and C. Yao (2020). GA-PIC: an improved Green-Ampt rainfall-runoff model with a physically based infiltration distribution curve for semi-arid basins, Journal of Hydrology, 586, 124900, doi: 10.1016/j.jhydrol.2020.124900. |
89 | Green-Ampt rainfall-runoff model | †Li, Z., W. Huo, and K. Zhang (2020). Improvement and preliminary application of Green-Ampt rainfall-runoff model, Journal of Hohai University. Natural Sciences, 48(5), 385-391. |
88 | Drought | 陶然,†张珂 (2020). 基于PDSI的中国近30年气象干旱特征及时空变化分析,水资源保护, 36(5), 78-85. |
87 | Assessment framework | †Zhang, K, G.B. Ruben, X. Li, Z. Li, Z. Yu, J. Xia, and Z. Dong (2020). A comprehensive assessment framework for quantifying climatic and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin, Environmental Modelling & Software, 128, 104704, doi: 10.1016/j.envsoft.2020.104704. |
86 | WRF-Hydro Model | Sun, M., Z. Li, C. Yao, Z. Liu, J. Wang, A. Hou, K. Zhang, W. Huo, and M. Liu (2020). Evaluation of Flood Prediction Capability of the WRF-Hydro Model Based on Multiple Forcing Scenarios, Water, 12, 874, doi:10.3390/212030874. |
85 | Global terrestrial energy fluxes | Forzieri, G., D.G. Miralles, P. Ciais, R. Alkama, Y. Ryu, G. Duveiller, K. Zhang, E. Robertson, M. Kautz, B. Martens, C. Jiang, A. Arneth, G. Georgievski, W. Li, G. Ceccherini, P. Anthoni, P. Lawrence, A. Wiltshire, J. Pongratz, S. Piao, S. Sitch, D.S. Goll, V.K. Arora1, S. Lienert, D. Lombardozzi, E. Kato, J.E.M.S. Nabel, H. Tian, P. Friedlingstein, and A. Cescatti (2020). Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 10, https://doi.org/10.1038/s41558-020-0717-0 |
84 | Ecohydrological response | Liao, S., L. Xue, Z. Dong, B. Zhu, K. Zhang, Q. Wei, F. Fu, and G. Wei (2020). Cumulative ecohydrological response to hydrological processes in arid basins. Ecological Indicators, 111, 106005. |
83 | Landslide | Wang, S, †K. Zhang, L.P.H. van Beek, X. Tian, and T.A. Bogaard (2020). Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment. Environmental Modelling and Software, 124, 104607, https://doi.org/10.1016/j.envsoft.2019.104607. |
82 | ET | Wang Jingfeng, 刘元波,张珂 (2019). 最大熵增地表蒸散模型:原理及应用综述. 地球科学进展, 6, 596-605. |
81 | Flood hazard | Khaing ZM, †K. Zhang, H. Sawano, B.B. Shrestha, T. Sayama, K. Nakamura (2019). Flood hazard mapping and assessment in data-scarce Nyaungdon area, Myanmar. PLoS ONE 14(11): e0224558. https://doi.org/10.1371/journal.pone.0224558 |
80 | Climate change | †Li, X., †K. Zhang, and V. Babovic (2019). Projections of future climate change in Singapore based on a multi-site multivariate downscaling approach, Water, 11, 2300, doi:10.3390/w11112300. |
79 | Ecosystem Demography Model, version 2.2 | Longo, M., R. G. Knox, N. M. Levine, A. L. S. Swann, D. M. Medvigy, M. C. Dietze, Y. Kim, K. Zhang, D. Bonal, B. Burban, P.B. Camargo, M.N. Hayek, S.R. Saleska, R. da Silva, R.L. Bras, S.C. Wofsy, and P. R. Moorcroft (2019). The biophysics, ecology, and biogeochemistry of functionally diverse, vertically- and horizontally-heterogeneous ecosystems: the Ecosystem Demography Model, version 2.2 — Part 2: Model evaluation for tropical South America, Geoscientific Model Development, 12, 4347–4374. |
78 | Ecosystem Demography Model, version 2.2 | Longo, M., R. G. Knox, D. M. Medvigy, N. M. Levine, M. C. Dietze, Y. Kim, A. L. S. Swann, K. Zhang, C. R. Rollinson, R.L. Bras, S.C. Wofsy, and P. R. Moorcroft (2019). The biophysics, ecology, and biogeochemistry of functionally diverse, vertically- and horizontally-heterogeneous ecosystems: the Ecosystem Demography Model, version 2.2 — Part 1: Model description, Geoscientific Model Development, 12, 4309–4346. |
77 | Distributed Grid-Xinanjiang mode | †Yao, C., J. Ye, Z. He, S. Bastola, †K. Zhang, and Z. Li (2019). Evaluation of flood prediction capability of the distributed Grid-Xinanjiang model driven by WRF precipitation, Journal of Flood Risk Management, 2019, 12(S1), e12544, doi: 10.1111/jfr3.12544. |
76 | Soil moisture | †Zhang, K., A. Ali, A. Antonarakis, M. Moghaddam, S. Saatchi, A. Tabatabaeenejad, R. Chen, S. Jaruwatanadilok, R. Cuenca, W.T. Crow, and †P. Moorcroft (2019). The Sensitivity of North American Terrestrial Carbon Fluxes to Spatial and Temporal Variation in Soil Moisture: An Analysis Using Radar-Derived Estimates of Root Zone Soil Moisture, Journal of Geophysical Research-Biogeosciences, 124, 3208-3231, doi: 10.1029/2018JG004589. |
75 | Hydrological model | †Huang, Y., A. Bardossy, and †K. Zhang (2019). Sensitivity of hydrological model to temporal and spatial resolutions of rainfall data, Hydrology and Earth System Sciences, 23, 1-17. |
74 | Soil moisture | †Zhang, K., L. Chao, Q. Wang, Y. Huang, R. Liu, Y. Hong, Y. Tu , W. Qu, and J. Ye (2019). Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China, Water Science and Engineering, 12(2): 85-97. |
73 | Water use efficiency | Zhang, K., Liu, L., Chao, L., et al., (2019). Spatiotemporal variations of terrestrial ecosystem water use efficiency in Yunnan Province from 2000 to 2014, Water Resources Protection, 35(5), 1–5, doi:10.3880/j.issn.1004-6933.2019.05.001. |
72 | Soil moisture | †Zhang, K., Q. Wang, L. Chao, J. Ye, Z. Li, Z. Yu, T. Yang, and Q. Ju (2019). Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China, Journal of Hydrology, 574, 903-914. |
71 | Soil moisture | 王青青,†张珂,叶金印,李致家(2019).安徽省土壤湿度时空变化规律分析及遥感反演,河海大学学报(自然科学版),47(2), 114-118. |
70 | Distributed hydrological model | Chao, L, †K. Zhang, Z. Li, J. Wang, C. Yao, Q. Li (2019). Applicability assessment of the CASCade Two Dimensional SEDiment (CASC2D-SED) distributed hydrological model for flood forecasting across four typical medium and small watersheds in China, Journal of Flood Risk Management, 12(S1), e12518, doi:10.1111/jfr3.12518. |
69 | Landslide and debris | †Zhang, K., S. Wang, H. Bao, and X. Zhao (2019). Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China, Natural Hazards and Earth System Sciences, 19, 93-105. |
68 | Drought | Mohmmed, A., †K. Zhang, M. Kabenge, S. Keesstra, A. Cerda, M. Reuben, M. Elbashier, T. Dalson, and A. Ali (2018). Analysis of Drought and Vulnerability in the North Darfur Region of Sudan, Land Degradation & Development, 29, 4424-4438, doi:10.1002/ldr.3180. |
67 | Distributed hydrological models | 包红军, 王凯, 张少杰, 王莉莉,刘敦龙, 张珂(2018). 耦合分布式水文模型的泥石流物理模型预报试验,暴雨灾害,37(4),303-310. |
66 | Runoff | Wu, X., Z. Zhang, X. Xiang, K. Zhang, H. Jin, X. Chen, C. Wang, Q. Shao, and W. Hua (2018). Changing runoff generation in the source area of the Yellow River: Mechanisms, seasonal patterns and trends, Cold Regions Science and Technology, 155, 58-68. |
65 | ET | Xu, S., Z. Yu, C. Yang, X. Ji, and K. Zhang (2018). Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin, Agricultural and Forest Meteorology, 263, 118-129. |
64 | Hydrological models | Huo, W., †Z. Li, J. Wang, C. Yao, †K. Zhang, and Y. Huang (2018). Multiple hydrological models comparison and an improved Bayesian model averaging approach for ensemble prediction over semi-humid regions, Stochastic Environmental Research and Risk Assessment, doi:10.1007/s00477-018-1600-7. |
63 | Amazon forest | Longo, M., R.G. Knox, N.M. Levine, L.F. Alves, D. Bonal, P.B. Camargo, D.R. Fitzjarrald, M.N. Hayek, N. Restrepo-Coupe, S.R. Saleska, R. da Silva, S.C. Stark, R.P. Tapajos, K.T. Wiedemann, K. Zhang, S.C. Wofsy, P.R. Moorcroft (2018). Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts, New Phytologist, 219(3), 914-931, doi: 0.1111/nph.15185. |
62 | Land cover change | Lee, E., A. Livino, S.C. Han, K. Zhang, J. Briscoe, J. Kelman, and P. Moorcroft (2018). Land cover change explains the increasing discharge of the Parana River, Regional Environmental Change, 18(6), 1871-1881, doi:10.1007/s10113-018-1321-y. |
61 | Flood forecast | Ren, W., T. Yang, P. Shi, C. Xu, K. Zhang, X. Zhou, Q. Shao, and P. Ciais (2018). A probabilistic method for streamflow projection and associated uncertainty analysis in a data sparse alpine region, Global and Planetary Change, 165, 100-113. |
60 | Flash flood | Guo, L., B. He, M. Ma, Q. Chang, Q. Li, K. Zhang, and Y. Hong (2018). A comprehensive flash flood defense system in China: overview, achievements, and outlook, Natural Hazards, 92(2), 727-740, doi: 10.1007/s11069-018-3221-3. |
59 | Precipitation | Chao, L., †K. Zhang, Z. Li , Y. Zhu, J. Wang, and Z. Yu (2018). Geographically Weighted Regression Based Methods For Merging Satellite and Gauge Precipitation, Journal of Hydrology, 558, 275-289. |
58 | Canopy conductance | Xu, S., Z. Yu, K. Zhang, X. Ji, C. Yang, and E.A. Sudicky (2018). Simulating canopy conductance of the Haloxylon ammodendron shrubland in an arid inland river basin of northwest China, Agricultural and Forest Meteorology, 249, 22-34. |
57 | Flash Flood | Ma, M., H. Yu, H. Wang, F. Kong, K. Zhang, H. Yang, C. Liu, and Q. Liu (2018). Characteristics of Urban Waterlogging and Flash Flood Hazards and Their Integrated Preventive Measures: Case Study in Fuzhou, China, Journal of Sustainable Water in the Built Environment, 4(1): 05017007. |
56 | Chemical Oxygen Demand | Ruben, G.B., †K. Zhang, H. Bao, and X. Ma (2018). Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand, Water Resources Management, 32(1), 273-283, doi:10.1007/s11269-017-1809-0. |
55 | Flash flood | He, B., X. Huang, M. Ma, Q. Chang, Y. Tu, Q. Li, K. Zhang, and Y. Hong (2017). Analysis of flash flood disaster characteristics in China from 2011 to 2015, Natural Hazards, 90(1), 407-429, doi:10.1007/s11069-017-305207. |
54 | Flood forecast | 李致家,姚成,张珂,朱跃龙,刘志雨,李巧玲,童冰星,黄小祥,黄鹏年 (2017). 基于网格的精细化降雨径流水文模型及其在洪水预报中的应用, 河海大学学报(自然科学版),45(6): 471-480. |
53 | Soil moisture | 刘荣华,†张珂,晁丽君,王青青,洪阳,涂勇,曲伟 (2017). 基于多源卫星观测的中国土壤湿度时空特征分析,水科学进展,28(4), 479-487. |
52 | Landslide | 包红军,†张珂,晁丽君,赵晓萌,刘艳辉,王晟,刘凑华 (2017). 基于水土耦合机制的流域滑坡预报研究,气象,43(9), 1138-1150. |
51 | Flood forecast | 包红军,张珂,魏丽,李致家,宗志平,谌芸,狄靖月,栾承梅,刘开磊,曹勇 (2017). 淮河流域2016年汛期洪水预报试验,气象,43(7), 831-844. |
50 | Hydrometeorological Applications | Qi, Y., Q. Cao, B. Yong, K. Zhang, and Z. Li (2017). Hydrometeorological Applications: Severe Weather Precipitation Detection, Estimation, and Forecast, Advances in Meteorology, 8365319, doi:10.1155/2017/8365319. |
49 | Distributed hydrological model | Bao, H., K. Zhang, L. Wang, Z. Li, and C. Yao (2017). Application of a developed distributed hydrological model based on the mixed runoff generation model and 2-D kinematic wave flow routing model for better flood forecasting, Atmospheric Science Letters, 18, 284-293, doi:10.1002/asl.754. |
48 | Recession flow analysis | †Li, W., †K. Zhang, Y. Long, and L. Feng (2017). Estimation of active stream network length in a hilly headwater catchment using recession flow analysis, Water, 9 (5), 348, doi:10.3390/w9050348. |
47 | Hydrological Model | Wang, L., D. Chen, H. Bao, and K. Zhang (2017). On Simulation Improvement of the Noah_LSM by Coupling with a Hydrological Model Using a “Double-Excess” Runoff-production Scheme in GRAPES_Meso model, Meteorological Applications, 24, 512-520. |
46 | Water Resources Management | †Yang, N., †K. Zhang, Y. Hong, Q. Zhao, Q. Huang, Y. Xu, X. Xue, and S. Chen (2016). Evaluation of the TRMM Multisatellite Precipitation Analysis and Its Applicability in Supporting Reservoir Operation and Water Resources Management in Hanjiang basin, China, Journal of Hydrology, 549, 313-325. |
45 | Runoff sensitivity | Liu, D., A.K. Mishra, and K. Zhang (2017). Runoff sensitivity over Asia: Role of climate variables and initial soil conditions, Journal of Geophysical Research-Atmospheres, 122, 2218-2238, doi:10.1002/2016JD025694. |
44 | Amazon forest | Guimberteau, M., P. Ciais, A. Ducharne, J.P. Boisier, A.P.D. Aguiar, H. Biemans, H. D. Deurwaerder, D. Galbraith, B. Kruijt, F. Langerwisch, G. Poveda, A. Rammig, D. A. Rodriguez, G. Tejada, K. Thonicke, C. Von Randow, R.C. S. Von Randow, K. Zhang, and H.Verbeeck (2017). Impacts of future deforestation and climate change on the hydrology of the Amazon basin: a multi-model analysis with a new set of land-cover change scenarios, Hydrology and Earth System Sciences, 21, 1455-1475. |
43 | CREST Model | Shen, X., Y. Hong, K. Zhang, and Z. Hao (2017). Refine a Distributed Linear Reservoir Routing Method to Improve Performance of the CREST Model, Journal of Hydrologic Engineering, doi:10.1061/(ASCE)HE.1943-5584.0001442. |
42 | Amazon forest | Moghim, S., S. McKnight, K. Zhang, A. M. Ebtehaj, R.C. Knox, R.L. Bras, P.R. Moorcroft, and J. Wang (2016). Bias-corrected data sets of climate model outputs at uniform space-time resolution for land surface modelling over Amazonia, International Journal of Climatology, 37, 621-636, doi:10.1002/joc.4728. |
41 | Landslides | He, X., Y. Hong, H. Vergara, K. Zhang, P.E. Kirstetter, J.J. Gourley, Y. Zhang, G. Qiao, and C. Liu (2016). Development of a coupled hydrological-geotechnical framework for rainfall-induced landslides prediction, Journal of Hydrology, 543, 395-405. |
40 | Streamflow | Li, S., Y. Chen, Z. Li, and K. Zhang (2016). Applying a statistical method to streamflow reduction caused by underground mining for coal in the Kuye River basin, Science China Technological Sciences, 59(12), 1911-1920, doi: 10.1007/s11431-016-0393-4. |
39 | Xinanjiang model | Li, Z., K. Liang, G. Kan, Q. Li, C. Yao, K. Zhang (2016). A method for deriving the river network flow concentration parameter Cs of the Xinanjiang model, Advances in Water Science, 27(5), 652-661. |
38 | Landslide | . †Zhang, K., X. Xue, Y. Hong, J. J. Gourley, N. Lu, Z. Wan, Z. Hong, and R. Wooten (2016). iCRESTRIGRS: A coupled modeling system for cascading flood-landslide disaster forecasting, Hydrology and Earth System Sciences, 20, 5035-5048, doi:10.5194/hess-20-5035-2016. |
37 | Amazonian forests | Johnson, M.O., D. Galbraith, E. Gloor, H. De Deurwaerder, M. Guimberteau, A. Rammig, K. Thonicke, H. Verbeeck, C. von Randow, R.J.W. Brienen, T.R. Feldpausch, G. Lopez Gonzalez, A. Monteagudo, O.L. Phillips, C.A. Quesada, B. Christoffersen, P. Ciais, S. Gilvan, B. Kruijt, P. Meir, P. Moorcroft, K. Zhang, E.A. Alvarez, A Alves de Oliveira, I Amaral, A Andrade, L.E.O. C Aragao, A Araujo-Murakami, E.J.M. M Arets, L Arroyo, G. A Aymard, C Baraloto, J Barroso, D Bonal, R Boot, J Camargo, J Chave, A Cogollo, F Valverde Cornejo, L da Costa, A di Fiore, L Ferreira, N Higuchi, E Honorio, T J Killeen, S. G Laurance, W. F Laurance, J Licona, T Lovejoy, Y Malhi, B Marimon, B. H Junior Marimon, D.C. L Matos, C Mendoza, D. A Neill, G Pardo, M Peña-Claros, N.C. A Pitman, L Poorter, A Prieto, H Ramirez-Angulo, A Roopsind, A Rudas, R. P Salomao, M Silveira, J Stropp, H ter Steege, J Terborgh, R Thomas, M Toledo, A Torres-Lezama, G.M.F van der Heijden, R Vasquez, I Vieira, E Vilanova, V. A Vos and T. R Baker (2016). Variation in stem mortality rates determines patterns of aboveground biomass in Amazonian forests: implications for dynamic global vegetation models, Global Change Biology, 22, 3996-4013, doi:10.1111/gcb.13315. |
36 | ET | †Zhang, K., J.S. Kimball and S.W. Running (2016). A review of remote sensing based actual evapotranspiration estimation, Wiley Interdisciplinary Reviews: Water, 3, 834-853, doi: 10.1002/wat2.1168. |
35 | Remote sensing and modeling | †Zhang, K., J. Wang, I. Ahmed, and P.H. Gowda (2016). Advances in remote sensing and modeling of terrestrial hydrometeorological processes and extremes, Advances in Meteorology, 2016, 4371840, doi: 10.1155/2016/5173984. |
34 | Hydrological model | Bao, H., L. Wang, Z. Li, C. Yao, and K. Zhang (2016). Grid-based distributed hydrological model with mixed runoff model and two-dimensional kinematic wave flow model, Water Resources and Power, 34(11), 1-4+21 |
33 | Hydrological model | Huang, P., Z. Li, Q. Li, K. Zhang, and H. Zhang (2016). Application and comparison of coaxial correlation diagram and hydrological model for reconstructing flood series under human disturbance, Journal of Mountain Science, 13(7), 1245-1264. |
32 | Hydraulic model | Liu, K., Z. Li, C. Yao, J. Chen, K. Zhang, and M. Saifullah (2016). Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting, International Journal of Sediment Research, 31(2), 149-158. |
31 | GDBC | Shen, X., H.J. Vergera, E.I. Nikolopoulos, E.N. Anagnostou, Y. Hong, Z. Hao, K. Zhang, and K. Mao (2016). GDBC: A tool for generating global-scale distributed basin morphometry, Environmental Modelling and Software, 83, 212-223. |
30 | Precipitation | Shi, P., T. Yang, K. Zhang, Q. Tang, Z. Yu, and X. Zhou (2016). Large-scale climate patterns and precipitation in an arid endorheic region: linkage and underlying mechanism, Environmental Research Letters, 11, 044006, doi:10.1088/1748-9326/11/4/044006. |
29 | Hydrological Models: | Xue, X., K. Zhang, Y. Hong, J.J. Gourley, W. Kellogg, R.A. McPherson, and Z. Wan (2016). New Multisite Cascading Calibration Approach for Hydrological Models: Case Study in the Red River Basin Using the VIC Model, Journal of Hydrologic Engineering, 21(2), 05015019, doi:10.1061/(ASCE)HE.1943-5584.0001282. |
28 | Amazon | Levine, N., K. Zhang, M. Longo, A. Baccini, O. Phillips, S.L. Lewis, E. Alvarez, A.C.S. de Andrade, R.J.W. Brienen, T. Erwin, T.R. Feldpausch, A. Mendo, P.N. Vargas, A. Prieto, J.E.S. Espejo, Y. Malhi, and P. Moorcroft (2016). Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change, PNAS, 113(3), 793-797, doi: 10.1073.pnas.1511344112. |
27 | Amazon biomass | Castanho, A., D. Galbraith, K. Zhang, M. Coe, M.H. Costa, and P. Moorcroft (2016). Changing Amazon biomass and the role of atmospheric CO2 concentration, climate and land use, Global Biogeochemical Cycles, 30(1), 18-39, doi:10.1002/2015GB005135. |
26 | ET | †Zhang, K., J.S. Kimball, R.R. Nemani, S.W. Running, Y. Hong, J.J. Gourley, and Z. Yu (2015). Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration, Scientific Reports, 5, 15956; doi: 10.1038/srep15956. |
25 | ET | #Wan, Z., #†K. Zhang, X. Xue, Z. Hong, †Y. Hong, and J.J. Gourley (2015). Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States, Water Resources Research, 51, 6485–6499, doi:10.1002/2015WR017311. |
24 | Amazonian ecosystems | Zhang, K., A. Castanho, D. Galbraith, S. Moghim, N. Levine, R. Bras, M. Coe, M.H. Costa, Y. Malhi, M. Longo, R.G. Knox, S. McKnight, J. Wang, and †P.R. Moorcroft (2015). The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2 and land-use, Global Change Biology, 21, 2569-2587. |
23 | Ecosystem-atmosphere model | R.G. Knox, M. Longo, A.L.S. Swann, K. Zhang, N.M. Levine, P.R. Moorcroft, and R.L. Bras (2015). Hydrometeorological effects of historical land-conversion in an ecosystem-atmosphere model of northern South America, Hydrology and Earth System Sciences, 19, 241-273. |
22 | Xinanjiang model | Yao, C., K. Zhang, Z. Yu, Z. Li and Q. Li (2014). Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph, Journal of Hydrology, 517, 1035-1048. |
21 | Non-frozen seasons | Kim, Y., J.S. Kimball, K. Zhang, K. Didan, I. Velicogna, and K.C. McDonald (2013). Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing, International Journal of Remote Sensing, 35(10), 3700-3721. |
20 | Inferred climate model | Schwalm, C. R., D.N. Huntinzger, A.M. Michalak, J.B. Fisher, J.S. Kimball, B. Mueller, K. Zhang and Y. Zhang (2013). Sensitivity of inferred climate model skill to evaluation decisions: A case study using CMIP5 evapotranspiration, Environmental Research Letters, 8, 024028, doi:10.1088. |
19 | Non-frozen seasons | Kim, Y., J.S. Kimball, K. Zhang and K.C. McDonald (2012). Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth, Remote Sensing of Environment, 121, 472-487. |
18 | Distributed grid-based Xinanjiang | Yao, C., Z. Li, Z. Yu and K. Zhang (2012). A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information, Journal of Hydrology, 468-469, 47-62. |
17 | Freeze-thaw | †Zhang, K., J.S. Kimball, Y. Kim and K.C. McDonald (2011). Changing freeze-thaw seasons in northern high latitudes and associated influences on evapotranspiration, Hydrological Processes, 25, 4142-4151, doi:10.1002/hyp.8350. |
16 | ET | Jung, M., M. Reichstein, P. Ciais, S. Seneviratne, J. Sheffield, M. Goulden, G. Bonan, A. Cescatti, J. Chen, R. de Jeu, H. Dolman, W. Eugster, D. Gerten, D. Gianelle, N. Gobron, J. Heinke, J. Kimball, B. Law, L. Montagnani, Q. Mu, B. Mueller, K. Oleson, D. Papale, A. Richardson, O. Roupsard, S. Running, E. Tomelleri, N. Viovy, U. Weber, C. Williams, E. Wood, S. Zaehle, and K. Zhang (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature, 467, 951-954. |
15 | ET | †Zhang, K., J.S. Kimball, R.R. Nemani and S.W. Running (2010). A continuous satellite-derived global record of land surface evapotranspiration from 1983-2006, Water Resources Research, W09522, 10.1029/2009WR008800. |
14 | Arctic System | Rawlins, M.A., M. Steele, M.M. Holland, J.C. Adam, J.E. Cherry, J.A. Francis, P.Y. Groisman, L.D. Hinzman, T.G. Huntington, D. L. Kane, J.S. Kimball, R. Kwok, R.B. Lammers, C.M. Lee, D.P. Letternmaier, K.C. McDonald, E. Podest, J. W. Pundsack, B. Rudels, M.C Serreze, A. Shiklomanov, Q. Skagseth, T.J. Troy, C.J. Vorosmarty, M. Wensnahan, E.F. Wood, R. Woodgate, D. Yang, K. Zhang and T. Zhang (2010), Analysis of the Arctic System for freshwater cycle intensification: Observations and expectations, Journal of Climate, 23, 5717-5737. |
13 | Land surface air temperature | Jones, L.A., C.R. Ferguson, J.S. Kimball, K. Zhang (2010), S.T.K. Chan, K.C. McDonald, E.G. Njoku and E.F. Wood. Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3, 111-123. |
12 | ET | †Zhang, K., J.S. Kimball, Q. Mu, L.A. Jones, S.J. Goetz and S.W. Running (2009). Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005, Journal of Hydrology, 379, 92-110. |
11 | CO2 exchange | Kimball, J.S., L.A. Jones, K. Zhang, F.A. Heinsch, K.C. McDonald and W.C. Oechel (2009). A satellite approach to estimate land-atmosphere CO2 exchange for boreal and Arctic biomes using MODIS and AMSR-E, IEEE Transactions on Geoscience and Remote Sensing, 47(2), 569-587. |
10 | NPP | †Zhang, K., J.S. Kimball, E.H. Hogg, M. Zhao, W.C. Oechel, J.J. Cassano and S.W. Running (2008). Satellite-based model detection of recent climate-driven changes in northern high latitude vegetation productivity, Journal of Geophysical Research-Biogeosciences, 113, G03033, doi:10.1029/2007JG000621. |
9 | GIS-based hydrological models | Li, Z. and K. Zhang (2008). Comparison of three GIS-based hydrological models, Journal of Hydrologic Engineering, 13(5), 364-370. |
8 | NPP | †Zhang, K., J.S. Kimball, K.C. McDonald, J.J. Cassano and S.W. Running (2007). Impacts of large-scale oscillations on pan-Arctic terrestrial net primary production, Geophysical Research Letters, 34, L21403, doi:10.1029/2007GL031605. |
7 | Climate Change | Bunn, A.G., S.J. Goetz, J.S. Kimball and K. Zhang (2007). Northern high latitude ecosystems respond to recent climate change, EOS, Transactions, American Geophysical Union, 88 (34), 333-340. |
6 | NPP | †Zhang, K., J.S. Kimball, M. Zhao, W.C. Oechel, J. Cassano and S.W. Running (2007). Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalyses, Journal of Geophysical Research-Biogeosciences, 112, G01011, doi: 10.1029/2006JG000249. |
5 | Distributed geological models | Li, Z., K. Zhang and C. Yao (2006). Comparison of distributed geological models based on GIS technology and DEM, Journal of Hydraulic Engineering, Chinese Hydraulic Engineering Society, 37(8), 1022-1028. |
4 | Isoline Mapping | Liu, J., Y. Zhao and K. Zhang (2006). MapX-based isoline mapping for hydrologic data, Advances in Science and Technology of Water Resources, 26(1), 70-72. |
3 | GTOPMODEL | Zhang, K., Z. Li and H. Bao (2005). Comparison between GTOPMODEL and TOPMODEL, Journal of Hohai University (Natural Sciences), 33(5), 509-512. |
2 | Watershed | Zhang, K., Y. Guo, Z. Li and J. Liu (2005). DEM-based watershed information extracting method and its application, Water Power, 31(2), 18-21. |
1 | Flood Forecasting | Zhang, K., and Z. Li (2003), Real-time Flood Forecasting and Flood Regulation System, Journal of Hohai University (Natural Science), 31(Supplement), 150-154. |